
 Perfect Information Extensive Form: Strategies, BR, NE

Game Theory Course:
Jackson, Leyton-Brown \& Shoham

Example: the sharing game

How many pure strategies does each player have?

Example: the sharing game

How many pure strategies does each player have?

- player I: 3

Example: the sharing game

How many pure strategies does each player have?

- player I: 3
- player 2: 8

Pure Strategies

- A pure strategy for a player in a perfect-information game is a complete specification of which action to take at each node belonging to that player.

Definition (pure strategies)

Let $G=(N, A, H, Z, \chi, \rho, \sigma, u)$ be a perfect-information extensive-form game. Then the pure strategies of player i consist of the cross product

$$
\prod_{h \in H, \rho(h)=i} \chi(h)
$$

Pure Strategies Example

What are the pure strategies for player 2?

Pure Strategies Example

What are the pure strategies for player 2?

- $S_{2}=\{(C, E) ;(C, F) ;(D, E) ;(D, F)\}$

Pure Strategies Example

What are the pure strategies for player 2 ?

- $S_{2}=\{(C, E) ;(C, F) ;(D, E) ;(D, F)\}$

What are the pure strategies for player I?

Pure Strategies Example

What are the pure strategies for player 2?

- $S_{2}=\{(C, E) ;(C, F) ;(D, E) ;(D, F)\}$

What are the pure strategies for player I?

- $S_{1}=\{(B, G) ;(B, H),(A, G),(A, H)\}$
- This is true even though, conditional on taking A, the choice between G and H will never have to be made

Nash Equilibria

Given our new definition of pure strategy, we are able to reuse our old definitions of:

- mixed strategies
- best response
- Nash equilibrium

Induced Normal Form

- In fact, the connection to the normal form is even tighter
- we can convert an extensive-form game into normal form

Induced Normal Form

- In fact, the connection to the normal form is even tighter
- we can convert an extensive-form game into normal form

	$C E$		$C F$	$D E$		$D F$
$A G$	3,8	3,8	8,3	8,3		
$A H$	3,8	3,8	8,3	8,3		
$B G$	5,5	2,10	5,5	2,10		
$B H$	5,5	1,0	5,5	1,0		

Induced Normal Form

- In fact, the connection to the normal form is even tighter
- we can convert an extensive-form game into normal form

	$C E$		$C F$	$D E$
$D F$				
$A G$	3,8	3,8	8,3	8,3
$A H$	3,8	3,8	8,3	8,3
$B G$	5,5	2,10	5,5	2,10
$B H$	5,5	1,0	5,5	1,0

- this illustrates the lack of compactness of the normal form
- games aren't always this small
- even here we write down 16 payoff pairs instead of 5

Induced Normal Form

- In fact, the connection to the normal form is even tighter
- we can convert an extensive-form game into normal form

	$C E$		$C F$	$D E$
$D F$				
$A G$	3,8	3,8	8,3	8,3
$A H$	3,8	3,8	8,3	8,3
$B G$	5,5	2,10	5,5	2,10
$B H$	5,5	1,0	5,5	1,0

- we can't always perform the reverse transformation
- e.g., matching pennies cannot be written as a perfect-information extensive form game

Induced Normal Form

- In fact, the connection to the normal form is even tighter
- we can convert an extensive-form game into normal form

Theorem

Every perfect information game in extensive form has a PSNE

This is easy to see, since the players move sequentially.

Induced Normal Form

- In fact, the connection to the normal form is even tighter
- we can convert an extensive-form game into normal form

	$C E$		$C F$	$D E$
$D F$				
$A G$	3,8	3,8	8,3	8,3
$A H$	3,8	3,8	8,3	8,3
$B G$	5,5	2,10	5,5	2,10
$B H$	5,5	1,0	5,5	1,0

- What are the (three) pure-strategy equilibria?

Induced Normal Form

- In fact, the connection to the normal form is even tighter
- we can convert an extensive-form game into normal form

	$C E$		$C F$	$D E$
$D F$				
$A G$	3,8	3,8	8,3	8,3
$A H$	3,8	3,8	8,3	8,3
$B G$	5,5	2,10	5,5	2,10
$B H$	5,5	1,0	5,5	1,0

- What are the (three) pure-strategy equilibria?
- $(A, G),(C, F)$
- $(A, H),(C, F)$
- $(B, H),(C, E)$

